Skip to content Skip to navigation

Stanford Data Science Post-Doc Fellows

2020 Fellows announced in late 2020
next round will be due in early 2021

The newly formed Data Science Institute at Stanford University seeks recent Ph.D. scientists, researchers and scholars of exceptional promise for postdoctoral fellow positions in interdisciplinary research with expertise in both the methods and theory of data science AND a domain of scholarship, like physical, earth, life, or social sciences, humanities and the arts, business, law, medicine, education, or engineering.

 

The Opportunity

Data Science Post-Doctoral Fellows work both within and at the boundaries between data science methods and the domains of scholarship that utilize data science to discover and create new knowledge. They will lead independent, original research programs with impact in one or more research domains and in one or more methodological domains (computer science, statistics, applied mathematics, etc). 

Ideal candidates will have earned a PhD in either a methods or applied discipline with demonstrated skills and experience in one of the other complementary areas (as examples: a PhD in statistics with applications to physics, or a PhD in biology with extensive use of machine learning).  Successful candidates will bring a research agenda that can take advantage of the unique intellectual opportunities afforded by Stanford University, and will have experience in working with researchers across different fields. Their research results will be published in technical reports, open-source software, peer-reviewed journals as well as presented at scientific conferences. Ideal candidates will have experience and interests in building community, teaching and training, and leadership with strong communication skills.

Applicants should expect traveling as a requirement to coordinate research with internal and external collaborators and sponsors. 

Term

Appointments will be initially for two years, with an expectation of renewal for a third on satisfactory performance. Fellowships have a competitive salary and benefits, with funds to support research and travel.  There is flexibility about the start date, but September 1, 2020 is expected.

Qualifications

  • Recent PhD with experience in a complementary field(s).

  • Excellent experience in their PhD discipline

  • Excellent knowledge of advanced software engineering, computer science and/or statistics

  • Demonstrated commitment to reproducibility and open research through existing public release of research data and software code

  • Excellent verbal and written communication and presentation skills necessary to author technical and scientific reports, publications, invited papers, and to deliver scientific presentations, seminars, meetings and/or teaching lectures.

  • Experience collaborating effectively with a team of scientists of diverse backgrounds.

Desired Qualifications

  • Experience in developing curriculum and teaching.

  • Experience developing open-source research software used by a community beyond their lab.

  • Experience building inclusive communities of practice around data science that are diverse and equitable for all.

Desired Start

As soon as possible

Required Application Materials

  • Applicants should submit their (1) curriculum vitae, (2) publication/software list, and (3) two-page letter of intent detailing a proposed research project. We encourage including the names of potential faculty collaborators (ideally bridging a methods domain and an application domain, e.g. Stats+Bio, CS+politics, etc).

  • Applicants are encouraged to discuss their proposed research plan with potential faculty collaborator(s) in preparing their application.

  • Applicants should arrange to have two letters of reference submitted to the below email with the subject line: Reference Letter for <applicant's name>.

 

Stanford University is an affirmative action and equal opportunity employer, committed to increasing the diversity of its workforce. It welcomes applications from women, members of minority groups, veterans, persons with disabilities, and others who would bring additional dimensions to the university's research and teaching mission.