Covidcast: Forecasting Aids for Delphi

August 11, 2021

Taha Bouhoun, Michelle Lee, Shilaan Alzahawi
Covidcast: Forecasting Aids for Delphi

Taha Bouhoun
Minerva University
DSSG Fellow

Michelle Lee
Columbia University
DSSG Fellow

Shilaan Alzahawi
Stanford University
Technical mentor

Balasubramanian Narasimhan
Stanford University
Faculty mentor

Daniel McDonald
University of British Columbia, Canada
Faculty mentor
Delphi Research Group

The Delphi Research Group at Carnegie Mellon University and is one of the two influenza forecasters in the United States.

- The group’s goal is to develop the theory and practice of epidemiological forecasting.
- Prior to COVID-19, the group also worked on forecasting for influenza, dengue, and norovirus.
Since March 2020, the Delphi research group has maintained the largest public repository of real-time indicators of COVID-19 activity, through a public API.

Every Monday, the Delphi Covidcast generates forecasts of cumulative COVID-19 cases and deaths in the U.S. These predictions are reviewed by the team and sent to the CDC COVID-19 Forecast Hub.
What DELPHI would like to know

- How does our (Delphi’s Covidcast) forecaster do compared to others?
- Assess new forecasters before they are deployed
- Are there periods of time that we do much worse or better?
- Are there areas of improvement we need to focus on?

Our project involves the creation of a report that answers these questions
Goals & Deliverables

Our Goal
● Develop tools for comparing and evaluating COVID forecasters

Our Deliverables
● An interactive parameterized report that evaluates and compares the performance of several COVID-19 forecasters for cases, deaths, and hospitalizations
 ○ Along with the report, the user can download the underlying report-specific data
● The user can automatically generate a report according to their chosen parameters
 ○ The number of epi-weeks ahead that the forecasts are made
 ○ The specific forecasters to compare to
 ○ Whether to use a colorblind-safe palette for generating the plots
● A GitHub repository with fully documented code and vignettes
Outcomes of Interest & Data Sources

- **Covid-19 cases**
 Number of daily confirmed cases reported by state and local health authorities

- **Covid 19- deaths**
 Official figures of death due to COVID-19 as confirmed by health authorities

- **Covid-19 hospitalizations**
 Daily Covid-19 related hospital admissions, estimated from health authorities’ aggregated statistics and patient data
Metrics to Evaluate Forecasting Performance

- **Weighted Interval Score (WIS)**
 A proper score that combines a set of prediction interval scores. A smaller WIS indicates better performance.

- **Coverage**
 An estimate of the probability that a forecaster's 80% interval correctly includes the actual value.

- **Absolute Error**
 The difference between the actual value and the point forecast.
Limitations of the Current Report

- Too specific
- API based:
 - Slow in knitting in R studio
 - Unable to run reports in case of API problems
- Unable to personalize
- Visually unappealing (many plots, colors of the graphs)
Project Architect: Generalizable Report

Choices

Template

Modified R Markdown

Knitted Report
Step 1: Generate *(cases, hospitalizations, or deaths)* report with chosen parameters
Step 2: Explore interactive graphs in tabs

By Forecast Dates

The Weighted Interval Score can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness (spread) and penalties for over- and under-prediction. With certain weight settings, the WIS is an approximation of the continuous ranked probability score, and can also be calculated in the form of an average pinball loss. A smaller WIS indicates better performance.
Functionality

Step 3 (optional): Download underlying data

To promote the flexibility to replicate the report, the data used in this report can be easily downloaded as a CSV file. By doing so, the user can generate customized plots or even include their own forecaster.

- Download Predictions Evaluation
- Download Raw Predictions
Colorblind-Safe Mode

Forecasts made over July 20, 2020 to July 19, 2021

Before:

After:
Identifying Discrepancies and Performances

Maps
To contextualize the forecast evaluations, the following tables illustrate the performance of COVID forecasts across all US states over forecast dates and weeks ahead. Note that the results are scaled by population.

<table>
<thead>
<tr>
<th>Mean Weighted Interval Score</th>
<th>Mean Absolute Error</th>
<th>Mean Coverage 80</th>
</tr>
</thead>
</table>

The Weighted Interval Score can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness (spread) and penalties for over- and under-prediction. With certain weight settings, the WIS is an approximation of the continuous ranked probability score, and can also be calculated in the form of an average pinball loss. A smaller WIS indicates better performance.
Trajectory plots
The following plots show the predictions of the CMU-TimeSeries forecaster along with the confidence interval for each of the US states. The forecasts project 1, 2, 3, 4 weeks ahead.
Limitations of the Original Report

1. Too specific
2. API based:
 a. Slow in knitting in R studio
 b. Unable to run reports in case of API problems
3. Unable to personalize
4. Visually unappealing (many plots, colors of the graphs)

Solutions

1. Use parameters and helper functions that can change the markdown parameters
2. Allow download of preformatted data from AWS bucket and prediction data frame (avoid API call)
3. Add better interactivity to plots
4. Organize the plots into tabs for easier navigation
Project Artifacts

- Templated markdown files
- Auxiliary R scripts for manipulating markdowns and generating reports
- Example reports
- A GitHub repository with fully documented code and vignettes

Future Directions

- Shiny app that generates the report with the click of a button
- County-specific forecaster performance
- Docker solution for batch generation of reports
Thank you to our mentors and the DELPHI team!

Shilaan Alzahawi
Technical mentor

Balasubramanian Narasimhan
Faculty mentor

Daniel McDonald
Faculty mentor