Measuring spatial-temporal change of physical conditions in neighborhoods with street view imagery

Daniel Chen, Tingyan Deng, Evelyn Fitzgerald, Lijing Wang
2021 Data Science for Social Good summer program
Stanford University
Our team

Daniel Chen
DSSG fellow
MS student
Stanford University

Tingyan Deng
DSSG fellow
Undergraduate student
Vanderbilt University

Evelyn Fitzgerald
DSSG fellow
MEng recent graduate
Cornell University

Lijing Wang
Technical mentor
PhD student
Stanford University

Jackie Hwang
Faculty mentor
Professor in Sociology
Stanford University
Project Motivation

Presence of
- physical disorder
- poorly maintained properties
- vacant lots in neighborhoods

Neighborhood environmental characteristics

Well-being:
- physical and mental health
- crime and disorder
- neighborhood disinvestment

Negatively affect
Evolution of systematic social observation (SSO)

Systematic social observation (SSO) at scale
Project Goal

Utilizing deep learning to identify building upkeep from Google Street View images of urban streetscapes:

- at a large scale
- over time (2007–2017)
- across multiple cities (Detroit, Boston, LA, etc.)

and quantitatively analyze relationship between building upkeep conditions and well-being characteristics
Google Street View images over time

2007

2014

2017
Training data collection

- [Input] Street View Imagery
- [Output] MTurk survey to generate TrueSkill scores
- Training set: 2964 Boston images, 3995 Detroit images
1. Compare pairs of images for better upkeep
2. Use comparisons to make TrueSkill score
3. Qualitatively create cutoffs on TrueSkill score to create 4 classes
4. Predict 4 classes

[Output] both class label and TrueSkill score:

- **Lower** trueskill scores, **higher** classes, **better** building upkeep
Building upkeep condition and TrueSkill scores

Detroit

Lower trueskill scores, higher classes, better building upkeep

Boston
Building upkeep condition and TrueSkill scores

Detroit

0: 33.54
0: 28.56
1: 26.58
2: 19.18
3: 17.79

Boston

0: 33.44
1: 31.36
2: 24.58
2: 22.19
3: 16.96
Class imbalance
Final training data

- 2964 Boston images, 3995 Detroit images

- Each image has:
 - Discrete class (0, 1, 2, or 3)
 - TrueSkill score
Challenges in building the model

1. Regression vs Classification problem

2. How to align TrueSkill scores across Boston and Detroit?
Challenge: classification vs regression

Originally, predict discrete upkeep classes

- are these classes interpretable?

class 0

class 1

class 2
Challenge: scores across multiple cities

- TrueSkill scores derived from image comparisons
 - Comparisons are done **within** each city
 - TrueSkill score on different scale for each city
 - 25 in Detroit ≠ 25 in Boston

- In order to train model with both cities:
 - Need to have all TrueSkill scores at same scale
Score alignment solution

- Important note: class labels qualitatively same across cities
- Solution: transform TrueSkill scores by aligning boundary of classes

- Using this method, piecewise linear transformation on TrueSkill
Model architecture
Result: regression and classification

\[R^2 = 0.484, \text{ MSE} = 4.487 \]
Result: regression and classification

$R^2 = 0.484$, $MSE = 4.487$
How do these results compare to naive model?

- Model that randomly predicts classes based on class frequency

![Diagram of classification metrics](https://en.wikipedia.org/wiki/Precision_and_recall)

Precision = \[rac{\text{How many selected items are relevant?}}{\text{How many relevant items are selected?}}\]

Recall = \[rac{\text{How many selected items are relevant?}}{\text{How many relevant items are selected?}}\]

Source: https://en.wikipedia.org/wiki/Precision_and_recall
Result: comparing to naive model

<table>
<thead>
<tr>
<th>class</th>
<th>precision</th>
<th>recall</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
<td>0.05</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.09</td>
<td>164</td>
</tr>
<tr>
<td>2</td>
<td>0.81</td>
<td>0.81</td>
<td>1416</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.04</td>
<td>75</td>
</tr>
</tbody>
</table>

accuracy 0.67

<table>
<thead>
<tr>
<th>class</th>
<th>precision</th>
<th>recall</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.42</td>
<td>0.27</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.22</td>
<td>164</td>
</tr>
<tr>
<td>2</td>
<td>0.86</td>
<td>0.90</td>
<td>1416</td>
</tr>
<tr>
<td>3</td>
<td>0.22</td>
<td>0.16</td>
<td>75</td>
</tr>
</tbody>
</table>

accuracy 0.77
Visualization on validation dataset: Detroit
Visualization on validation dataset: Boston
Inference on time series street view images
Time series analysis: Boston
The Great Recession

Unemployment Rate

Poverty Rate

Chang, S.-S; Stuckler, D; Yip, P; Gunnell, D (2013). "Impact of 2008 global economic crisis on suicide: Time trend study in 54 countries."
Well-being analysis: Boston

Predicted blight scores (95% CI)

Median household income in Boston
Conclusion

- We trained a deep neural network to perform systematic social observation at scale.
- Our neural network can identify changes in building upkeep in different neighborhoods and cities.
- Our time series analysis shows how changes in building upkeep in Boston reflect the Great Recession and recovery.
Expected impact

● Understand how neighborhood upkeep in cities changes over time
 ○ Our other target cities: Austin, Detroit, Los Angeles, Philadelphia

● Understand relationship between neighborhood upkeep and well-being
 ○ Measures of well-being: crime rates; physical, mental health; income; subjective well-being

● Recommend policies to reduce inequities in well-being
 ○ e.g. targeted greening/cleaning initiatives